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Experiments on the rupture of a thin spherical liquid film - formed from a solution 
of surfactant - are reported. The mean film thickness, prior to rupture, was measured 
by an electrical conductivity method: initial film thicknesses were of order 0.3- 
0.9 pm. For an unruptured film, drainage due to gravity reduced the film thickness ; 
the films ruptured naturally at a thickness of order 0.05-0.09 pm. 

When the spherical film was punctured by a needle, a hole was formed, which grew 
rapidly, bounded by a liquid rim. As the rim moved, i t  collected the liquid from the 
film ; but the rim was itself unstable, generating droplets continuously. The rim 
velocity, of order 10 m/s, was measured by cine photography a t  2000 frames/s. 
Measured rim velocities compared well with a simple theoretical result derived from 
either (i) a force balance on the rim or (ii) an energy balance, which demonstrates 
that  there is continuous energy dissipation due to  collision between the moving rim 
and the elements of the stationary film. 

When the moving rim had swept up the whole spherical film, much of the rim had 
disintegrated into droplets, but the remaining rim finally converged to give an 
‘ implosion ’ generating more droplets. These droplets, together with those generated 
by fragmentation of the rim in flight, were collected : their number, of order lo4, was 
measured by an image analyser, which also measured mean droplet size, of order 
lo2 pm. The total droplet area was a few per cent of the area of the original spherical 
film. 

1. Introduction 
This paper describes experimental and theoretical work on the rupture of a thin 

liquid film when the film shatters to form droplets. It is common experience that the 
process of rupture is rapid : this can be observed by blowing a ‘soap bubble ’) which 
is a thin liquid film, stabilized by surfactant and enclosing an almost spherical 
volume of air, typically 1-2 em diameter. When the film is punctured, the bubble 
bursts rapidly, forming a number of droplets. The film rupture was described by 
Rayleigh (1891) who observed that when the film is partly ruptured, much of the 
liquid from the vanished film is concentrated into a rim which bounds the unbroken 
film, the rim breaking up as it moves, to form droplets. Rayleigh noted that the 
surface energy of the vanished film appears as kinetic energy of the rim ; he quoted 
an estimated rim velocity of 16 yards a second, without giving details of his 
calculation or the formula from which the estimated velocity was obtained. Ranz 
(1959) described experiments to  measure rim velocity, using an arrangement shown 
in figure 1. A flat soap film was formed, attached to what appears to have been a 
metal ring about 10 cm diameter ; the film was then punctured by an  electric spark 
in the middle of the ring. Subsequently, a moving liquid rim was photographed, the 
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FTGTJRE 1 .  Rupture of flat soap film on a circular metal ring: the film is initially punctured at  
the centre of the metal ring (Ranz 1959). 

rim being concentric with the containing ring: the moving liquid rim swept up the 
liquid film in its path, thus adding liquid to the rim. The rim appeared, from 
photographs, to have swept up all the liquid which had been in the area from which 
the film had vanished ; but the rim evidently did not contain all the swept-up liquid, 
some having been lost, owing to the rim shedding droplets. Using the energy balance 
suggested by Rayleigh, Ranz obtained the following formula for the rim velocity : 

v = (4y/hp)k, (1) 

where y is the surface tension, p is the liquid density and h is the thickness of the 
original soap film. The energy balance shows that the rim velocity v is independent 
of the radius of the hole bounded by the rim: the progressively increasing surface 
energy liberated by rupture of the film appears as increased kinetic energy of the 
growing rim. Ranz showed that (1) was consistent with photographic measurements 
of rim velocity : the velocity was indeed independent of hole radius. He also measured 
the liquid film thickness and obtained fair agreement between observed rim velocity 
and (1) : but the film thickness measurement involved measuring the very long focal 
length (7-10m) of the soap film curved by gravity forces; this must have been 
difficult and prone to error. 

Pandit, Philip & Davidson (1987) observed the rupture of the thin film of liquid 
formed when a rising bubble bursts through a horizontal liquid surface. They derived 
an equation like (1) but they used the force balance given by Taylor (1960) to predict 
the radius of the liquid sheet formed by two coaxial opposing jets; such a sheet is 
bounded by a stationary rim a t  a radius determined by the balance between (i) the 
inward forces of surface tension and (ii) the outward radial momentum of the liquid 
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FIQURE 2. Close-up views of the rim moving round a spherical liquid film. Shedding of droplets from 
the rim is visible. (A),  (D), and (E) show the effect increasing viscosity: the letters refer to table 1 .  

in the sheet. A liquid rim bounding a moving liquid sheet is familiar to those who 
study atomisers, e.g. Dombrowski & Fraser (1954). 

The present paper describes work on the moving liquid rim, like that of Ranz 
(1959) which sweeps up the liquid from a thin stationary sheet as in the rupture of 
a soap bubble. Almost spherical soap films were used, so that the mean film 
thickness, prior to rupture, could be estimated from the conductivity between two 
electrodes in contact with opposite sides of the spherical film. The film was then 
punctured a t  one point by a needle, forming a ‘rupture rim’ of the kind described 
above, which swept up the spherical liquid film. Photographs of a typical rim are 
shown in figure 2. The rim velocity was measured by cine photography and the 
results were compared with theory using (i) a foree-momentum balance like that of 
Taylor (1960) and (ii) an energy balance as proposed by Rayleigh (1891). The two 
methods give the same rim velocity, as they should; the energy balance reveals a 
continuous dissipation of energy, due to impact between the moving rim and the 
elements of the liquid film which are necessarily stationary until each element is 
subsumed by the moving rim. This energy loss was ignored by Ranz, so our 
prediction of rim velocity is 1 / 4 2  times the value given by (1) .  

The liquid rim breaks into droplets and there appear to be two mechanisms of 
breakage : 

(i) The rim being approximately cylindrical, i t  is subject to the varicose instability, 
involving swellings and contractions, similar in character to that studied by 
Rayleigh (1945) and subsequently by many others (e.g. Rutland & Jameson 1971 ; 
Majumdar & Michael 1976). This leads to the shedding of droplets from the rim in 
flight, as seen in figure 2 ; the photographs are similar to those of Rayleigh (1891) and 
Ranz (1959). 

(ii) In  our experiments, the ‘rupture rim’ followed a nearly spherical path, as seen 
in figure 3, the rim shedding droplets as noted above. When the moving rim had 
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FIGURE 3. Flash photographs of liquid rim moving through a stationary spherical liquid film of 
diameter x 50 mm and initial thickness x 1 pm. Each photograph was from a separate experiment 
using the single flash equipment. Frames (a ) - ( f )  are for aqueous Teepol solution, B table 1 .  Frames 
(g)-(i) are for glycerol, E table 1 .  The times after puncture of the film were (ms); ( a )  2, ( b )  5, (c) 7, 
(4 9, (el 12, ( f )  13, (9) 7 ,  (h)  9, ( i )  12. 

swept up all the liquid from the original soap film, it formed an ‘implosion’ : elements 
of the rim from all parts of the original sphere converged in a region near to, but 
somewhat below, the point diametrically opposite to the original puncture of the 
spherical film ; the final convergence of the elements of the film caused break-up into 
fine droplets. The fact that this final ‘implosion ’ was a t  a lower level than the original 
puncture is believed to be due to thickening of the film in its lower regions due to 
gravity-induced drainage; the rim moves more slowly where the film is thicker and 
hence the asymmetry of the motion with respect to the diameter passing through the 
point of initial puncture. 
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FIGURE 4. Apparatus for study of liquid film rupture. F is the spherical liquid film, held between 
two platinised metal tubes T (diameter 19.2 mm). The film is punctured by needle N. For collection 
of the droplets arising from film rupture, the film is surrounded by ‘blotting paper’ B. 

Experiments, here described, were done to measure the number and size of 
droplets arising from both causes, i.e. from the rim instability, en  route, and the 
‘implosion ’ which finally destroyed the rim. 

The present work also included measurements of the ‘critical film thickness’ for 
the spherical soap film. The film was inflated, by the air supply shown in figure 4, to 
give an almost spherical shape: it was then allowed to drain until spontaneous 
rupture occurred a t  the critical thickness. The rim velocity experiments used film 
thicknesses much greater than the critical film thickness. 

2. Experiments 
2.1. Formation of the bubble 

The apparatus is shown diagrammatically in figure 4. Two platinized metal tubes, of 
diameter 19.2 mm, were mounted with their axes vertical and coincident : the ends 
of the tubes were separated by a distance H ,  adjustable to within 0.1 mm. 

The bubble was formed as follows. After wetting the end of each tube with the 
liquid, a beaker containing the liquid was placed so that the liquid surface contacted 
the bottom of the top tube: a thin liquid film, across the end of the tube, remained 
when the beaker was lowered. This horizontal film was then blown out by air supplied 
from the top tube: the blowing was stopped and the air supply tube pinched off, 
when the liquid film made contact with the top of the bottom tube. The bottom tube 
was sealed by that part of the liquid film which was within the diameter of the 
bottom tube, as shown in figure 4. The liquids used were: (i) aqueous solutions of 
Teepol and (ii) solutions of Teepol in glycerol. For each solution, the surface tension 
and electrical conductivity were measured. Properties are given in table 1. 
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Specific 
resistance 

Solution (am)  
A 0.788 
B 0.666 
C 0.476 
D 2.43 
E 38.4 

Surface 
tension Density Viscosity 

0.040 1004 2.0 
0.035 1006 6.0 
0.032 1008 10.0 

0.028 1017 27.0 
0.030 1060 260 

P (kg/m3) P (mPa 9) 

TABLE 1. Physical properties of liquids used : A-D were aqueous solutions of Teepol ; E was 
glycerol containing dissolved Teepol. 

The bubble diameter was varied by varying H ,  the gap between the ends of the 
tubes, and H ranged from 20 to 80 mm. 

2.2. Film thickness measurements 
Using a potentiometer method, the apparent resistance R between the two tubes was 
measured. For a film of spherical form, the mean film thickness h was calculated from 

0- 
h = -  [ -In tan2 (;a)] 

27rR 

obtained by integration of the potential gradients in the film due to the constant 
current therein. Here u is the specific resistance of the liquid; a is the angle 
subtended by the ends of the tubes as shown in figure 4. A similar analysis can be 
made for any film profile connecting the two cylinders. For example, with a 
cylindrical film of radius 4 H tan a, h = u/nR tan a. 

The validity of the method was checked by rapidly deflating the film to minimize 
drainage. The deflation was continued until the film was cylindrical and of the same 
diameter as the tubes, 19.2 mm; the resistance between the tubes was then measured. 
The estimated total liquid volumes, calculated from (i) the spherical film thickness 
measurement using (2) and (ii) the cylindrical film thickness measurement, agreed 
well with one another. 

The liquid film drained, owing to gravity. With a spherical film, the mean film 
thickness was measured as a function of time after the film was formed, up to the 
time t, a t  which the film reached its critical thickness h,, when it was inherently 
unstable and the bubble burst naturally. 

2.3. Film rupture : r im velocity measurements 
After measurements of the initial film thickness, as above, the film was punctured by 
the needle N ,  figure 4, which triggered the cine camera on making contact with the 
bubble. Taylor & Michael (1973) showed that a hole in a sheet of liquid will expand 
if the diameter of the hole is more than twice the thickness of the sheet. In  the present 
work, the thickness of the liquid film was much less than the diameter of the needle 
point ; consequently the hole created by the needle always expanded. The puncture 
was made immediately after formation of the bubble, so as to minimize film drainage 
prior to puncture. Early puncture was desirable, to  get the thickest possible film and 
hence the slowest rim velocity, giving the maximum number of cine pictures during 
the rupture process. 

After puncturing the film, the subsequent progress of the rupture process was 
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observed by cine photography a t  2000 frames/s. Single flash equipment was used in 
separate experiments to get the photographs in figure 2 and figure 3 :  each 
photograph is from a separate spherical film. These single flash experiments were 
performed in total darkness, with the camera shutter opened just before the film 
rupture. A Nikon (FG20) 35mm camera, equipped with a + 2  close-up lens, was 
used. The single flash unit was activated by the electrical signal from needle N (figure 
4), when it touched the liquid film; the electrical signal passed through a delay 
generator causing a controlled time delay of 1 to 30 ms between the needle touching 
the film and the light flash. Thus there was one flash a t  a predetermined time after 
the puncture. The single flash method was not suitable for velocity measurements, 
because each photograph was from a different spherical film. But rupture times 
deduced from the sequence of single flash photographs (as shown in figure 3) agreed 
well with results from the cine photographs. 

The sequence of photographs from the cine film was like those in figure 3,  but less 
sharp because the exposure time was necessarily longer than with the very short 
flashes for figure 3,  The rim velocity was estimated from the cine pictures by two 
methods as follows: 

(i) A mean rim velocity was obtained by measuring the time to between ( a )  the 
puncture and (b)  the rim implosion when the rim had just swept up the whole film: 
to  is the time for the rim to move round the whole periphery of the original sphere; 
it was obtained by counting frames and using the known framing rate. 

(ii) Local values of rim velocity were obtained by measuring the distance travelled 
by the rim from one frame to the next. 

2.4. Mechanism of droplet formation 

The mechanism of droplet formation can be seen from figures 2 and 3, especially 3 (9) 
and 3 ( h ) ,  showing behaviour with liquid of high viscosity: evidently the moving rim 
forms jets of liquid and each jet becomes unstable to form droplets. The breakup of 
the rim can be seen in figure 2, which is a close up view of the rim, showing the 
breakup into jets from which droplets are subsequently formed. It is evident that 
when the viscosity increases, the jets are further apart and have increased length 
prior to breakup. Larger and fewer droplets are therefore formed as the viscosity 
increases. 

2.5. Number and sizes of droplets generated 

To observe the number and sizes of droplets generated, the spherical soap bubble was 
surrounded by a complete cylinder of porous paper, BBBB (figure 4), like blotting 
paper. A dye - India ink for the aqueous solutions and for the glycerol - was added 
to the liquid forming the bubble. The blotting paper collected virtually all the 
droplets formed from the rim by the shedding in flight and from the final implosion 
of the rim. The sizes of the ink blots formed on the blotting paper had been calibrated 
with respect to the droplets from which they were formed. 

The large number of ‘ink blots’ on the blotting paper was examined by an image 
analyser, which gave the number of droplets, their mean size and the standard 
deviation of the size distribution. 

3. Theory 
3.1. Momentum balance 

Figure 5 shows the forces on an element of liquid rim. The rim was formed by picking 
up all elements of the thin flat film originally within the radius r and angle do. The 
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T 
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FIQURE 5. Forces on an element of rim, the rim formed from the vanished flat film between 
0 and radius r .  

forces on the rim are due to surface tension and must equate with the change of radial 
momentum of the rim. This method of analysis is essentially similar to  that of Taylor 
(1960) who considered a stationary rim bounding a thin liquid sheet generated by 
two opposed coaxial jets. 

It is readily shown that the radial component of the tangential forces T is 
negligible in comparison with the radial force 2yr do; the radial and tangential forces 
are due to surface tension. Hence, from a momentum balance, 

(3 )  
d 
-(pArdBv) = 2yr do, 
dt 

where A is the cross-sectional area of the rim. It is assumed that the rim contains all 
the liquid originally in the thin film of radius r and thickness h, so that from 
continuity, Ard8 = $2h do, and combining this with (3) gives 

ph- sr - = 2yr. 
2:) 

A solution to  this equation of motion is 2.1 = dr/dt = constant, giving 

v = (2y/ph)i. (5)  

Now (4) is a second-order differential equation and there may be other solutions 
besides ( 5 )  ; this question will be discussed below. A similar derivation was given by 
Pandit et al. (1987) but an incorrect use of the continuity equation led to a different 
numerical coefficient within the square root in ( 5 ) .  

3.2. Energy balance 
As noted above, Ranz (1959) used an energy balance to derive (1). But he ignored the 
energy dissipation due to collision of the moving rim with elements of the stationary 
film. Using a momentum balance, i t  is readily shown that when liquid of mass M ,  
moving with velocity v, amalgamates with a small liquid element of mass dM, the lost 
energy is @ikfv2. Now consider a moving rim, as in figure 5,  formed from a vanished 
film of area A,; the film may be flat, spherical, or of other shape. The energy balance 
is then 

2ydA, = d(L&v2) +$'dill, 

where M now denotes the mass of the rim. On the right-hand side of (6), the first term 
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represents the change of rim energy and the second is the energy dissipation due to 
impact of the rim with elements of the film. In  formulating (6), the surface energy of 
the rim, being small, was ignored. This is equivalent to neglecting the radial 
component of the forces T i n  figure 5. Order of magnitude calculations show that the 
surface energy of the rim is 2-3% of the surface energy of the original film. From 
continuity, M = PA, h which with (6) gives 

d 
dM 4yM = ph - (WW') . (7) 

Provided the centre of the rim moves along the centreline of the film, (7) is valid for 
all shapes of film. For a curved film - as in the present experiments - the path of the 
rim may deviate from the centreline of the film owing to centrifugal forces ; this will 
be discussed below in $3.4. 

Equation (7),  and consequently ( 5 ) ,  are valid for a 'linear rim' arising when a flat 
film of liquid is punctured along a straight line. It applies also for a point puncture, 
generating an expanding circular rim as in figure 1. In this case it may readily be 
shown that (4) and (7) are equivalent, as follows. Referring to the right-hand side of 

d(M2v2)/dM = 2Mv' + WV dv/dM. (71, 

Putting M = p+h and dM = 2xprhw dt, (7) then becomes 

2yr = ph(rv'+$'dw/dt), 

which is the same as (4). Hence (7)  is merely a restatement of (4) with the advantage 
that it can be integrated to  give 

M 2 w 2  = 2 y W / p h  + C, 

where C is an integration constant. It follows that 

w2 = ( 2 y / p h )  + C/M'. (8) 

The first term on the right-hand side of (8) leads to (5). The second term depends 
upon the initial conditions. If w = 0 when M = 0, as in the present experiments, the 
film starting from rest, then C = 0 so that (8) and (5) are identical. If C is finite, as 
for example when the rim received an initial impulse, then (8) tends to ( 5 )  when M 
is large so that ( 5 )  represents the asymptotic velocity of a rim sweeping up a thin 
liquid film. 

The energy balance is thus a useful alternative method of deriving the equation of 
motion of the rim, particularly as it gives a readily integrable form, (7). There is 
additional utility in the energy balance when breakup of the rim into droplets is 
considered. If the velocity of the droplets arising from the rim is the same as that of 
the rim, and if the surface energy of the droplets is small, then the energy balance 
(7)  will not be affected by rim breakup. 

A final point with regard to the energy balance is that i t  was used in deriving ( l ) ,  
but ignoring the energy dissipation due to impact between the moving rim and the 
stationary film: thus (5 )  predicts a velocity 1 / 4 2  times (1 ) ;  this effect of energy 
dissipation was noted by Culick (1960), who derived (5) by using a combination of the 
momentum and energy balance methods. 
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3.3. Fixed rim, moving Jilm : energy dissipation 

Having established, as above, that there is constant rim velocity when the rim grows 
by sweeping up a fixed liquid film, it is helpful to consider a frame of reference 
moving with the rim : this is the case considered by Taylor (1960) ; the flowing film 
feeds liquid steadily into the fixed rim. A momentum balance per unit length of rim 
then equates (i) the rate of momentum flux pv2h with (ii) the surface tension force 2y, 
giving (5). The entire kinetic energy of the film is lost, so the rate of energy 
dissipation, per unit length of rim, is +v3h. This may be compared with the result 
from the analysis of $3.2 for a stationary film swept up by a moving rim. From the 
derivation leading to (6), the rate of energy dissipation is +‘dM/dt = $v3h, using 
dM/d t  = pvh, i.e. the same energy dissipation rate as from ‘the fixed’ rim analysis. 
With the moving rim, the rate of Ioss of surface energy by the swept-up film is 
2vy = pv3h, using (5). Half of this energy is converted into the kinetic energy of the 
moving rim i ( d M / d t )  v 2  = &v3h, and the other half is dissipated. This accounts for the 
difference between (1) and (5). 

The method of analysis using a frame of reference moving with the rim can be used 
to demonstrate that  a change of liquid viscosity will not affect the rim velocity. With 
the rim fixed, i t  is instructive to calculate the Reynolds number for the flowing film, 
defined as pvh/,u, ,u being the liquid viscosity. I n  the present experiments, the orders 
of magnitude wcrc: p x 1000 kg/m3, v x 10 m/s, h % 0.5 pm, 2 < ,u d 200 mPa s ;  
thcse figures give 2.5 3 Re 3 0.025. It follows that viscous forces are substantial; 
presumably they are adequate to dissipate the kinetic energy of the elements of film 
entering the rim. 

3.4. Motion of the moving rim: non-spherical path 

The ‘centrifugal force’ on the rim will tend to make i t  follow a non-spherical path, 
causing the rim to move out to a larger radius than the radius of the original spherical 
soap film. Assuming that the rim does move in a spherical path, it is helpful to 
compare the surface tension forces on the rim, 2y per unit length of rim, with the 
‘centrifugal force’ mv2/a ,  m being the mass of the rim per unit length, and a. the 
radius of the spherical film: using (5) to get v, the two forces have the same 
magnitude when the rim has moved halfway round the sphere. Hence it is to be 
expected that the rim will move out to radii larger than a. The fact that in the 
experiments the rim appeared to move closely round the contour of the spherical film 
is probably due to droplet shedding from the growing rim. Droplet shedding would 
reduce the mass of the rim and hence reduce the magnitude of the above-mentioned 
‘centrifugal force’. As noted in $3.2, droplet shedding may not affect the energy 
balance leading to (5). 

4. Results and discussion 
4.1. Film thickness and drainage time 

The initial film thickness of the spherical bubbles, formed by the method of $2.1, was 
in the range 0.2-0.9 pm ; there was considerable variation in the thickness of the film 
formed on the top tube (figure 4) and the ultimate film thickness depended on the 
radius of the sphere into which the film was formed. As noted in $2, the film drained, 
owing to gravity, the liquid accumulating at the top of the bottom tube. Table 2 
shows values of the initial thickness h, and the time t ,  a t  which the film reached its 
critical thickness h, when the bubble burst naturally. 
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Solution 
and symbol 

Initial dia. 
(mm) 

70 
70 
40 
80 
40 
80 
80 
40 
40 
60 

Initial thickness 
h(!W 

0.51 f0.07 
0.268 f 0.02 
0.72 k0.2 
0.29 f 0.02 
0.47 f 0.16 

0.324 f 0.06 
0.41 fO.01 
0.72 f0.18 
0.56 f 0.03 
0.32f0.2 

Critical thickness 
h,(Clm) 

0.09 f 0.02 
0.07 f 0.03 
0.07 f0.02 
0.05 f 0.04 
0.06 & 0.03 
0.05f0.01 
0.06 & 0.02 
0.07 kO.02 
0.08 f 0.02 
0.07 f 0.02 

Stability 
time 
t,(d 

6f3 
4 f 3  

12f2 
7 f 2  

13f3 
9 f 2  

l O f 2  
13f2 
18k6 
14f5 

TABLE 2. Average film thicknesses for spherical bubbles, obtained from the electrical conduc- 
tivity between tubes, figure 4:  t,  is the time for drainage from h to h, 

These values of h, are in reasonable agreement with the experimental data of 
Sheludko (1967) who reported values in the range 0.03 < h, < 0.07 pm, quite similar 
to the results in table 2. The theoretical prediction of Patzer & Homsy (1975)) 
h, x 0.9 pm is much larger than these experimental findings. 

Table 2 shows that the drainage time t ,  increases with liquid viscosity, as would 
be expected. 

The drainage process must be complex and it is not clear what is the mechanism 
by which the film finally ruptures spontaneously : these are unsolved problems. 
Order-of-magnitude estimates of film drainage rate were made by assuming (i) a 
parabolic velocity profile in the liquid film and (ii) the boundary condition of zero 
velocity at both surfaces of the liquid film on the supposition that the surfactant 
causes the interfaces to be rigid ; it  is by no means certain that this assumption will 
be justified in practice. These order-of-magnitude estimates gave values of t ,  similar 
to the measured values in table 2. 

4.2. Rim velocity 

Results from the two methods of estimating rim velocity, described in $2.3, are 
shown in figure 6, together with the theoretical result ( 5 ) .  The theory is in good 
agreement with experiment. The error bars show the ranges of velocities from the 
frame-by-frame analysis, which gives higher velocities than the values from the 
overall rupture time. The reason for this difference may be as follows. The velocity 
obtained from the overall rupture time is based on the supposition that the rim 
travels a distance nu between puncture and final implosion, a being the radius of the 
spherical film. In fact the distance will be greater, owing to the centrifugal effect 
noted in 53.5, so the method will underestimate the velocity. The frame-by-frame 
method is based on the distance travelled from one frame to the next, thus giving a 
more realistic estimate of rim velocity. 

Mysels & Vijayendran (1973) reported measurements of rim velocity for a flat soap 
film of thickness h up to 1 pm, using laser beams to measure the film thickness and 
rim velocity. In  the range 0.1 < h < 1 pm, good agreement with (5) was obtained. For 
thinner films, windage was significant because of the higher rim velocities; 
consequently, the measured velocities, for h < 0.1 pm, were below the prediction of 
(5 ) .  
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3 

(y/hp)t (m/s) 

FIGURE 6. Relation between rim velocity and relevant variables : film thickness h :  surface tension 
y ; liquid density p. The points (key in table 2) give the average velocity from the total rupture time. 
The error bars give the range of velocities from observations of single frames. The line shows 
equation ( 5 ) .  

It is notable, from figure 6, that the rim velocity is independent of liquid viscosity : 
the glycerol films have the same velocity as the aqueous solutions, although the 
viscosity of the glycerol is up to  130 times higher. Viscous forces evidently do not 
affect the rate a t  which the rim picks up elements of the very thin liquid film. 

4.3. Mean droplet size and size distribution 
The method of $2.5 gave the number of droplets generated by droplet shedding from 
the rim and from the final implosion : typically 400G30000 droplets were generated. 
Table 3 shows the number of droplets, the mean size and the standard deviation of 
size, for a variety of conditions. The product (number of droplets) x 9cd3, where d is 
the mean droplet diameter, gave the total liquid volume, which was consistent with 
the estimated liquid volume of the original spherical bubble, using the film thickness 
measured by the electrical conductivity method, $2.2. 

However, the surface area of the droplets, crudely estimated from (number of 
droplets) x rcd2 is only about 3-6 YO of the surface area of the film forming the original 
bubble. Thus the surface energy of the droplets is only a small proportion of the 
original surface energy of the film as found by previous workers (Ranz 1959; 
Blanchard 1963). This is plausible: comparing (1) and (5) shows that only half the 
surface energy of the film is converted into kinetic energy of the moving rim. 
Implosion of the rim must cause further dissipation of energy. Moreover the droplets 
have their own kinetic energy, likely to  be comparable with the kinetic energy of the 
rim, for the droplets shed from the rim must leave with a velocity comparable with 
that of the rim. 
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drop area 

film area 
Initial Drop 1OOx 

sphere dia. Kumber of diameter 
Solution (rnm) drops (Fm) (%) 

A 80 80 000 20000 50 & 30 3.2 to 4.0 
B 40 13 000 4 2000 80 & 30 5.72 to 6.0 
C 60 27 000 4 3000 70 & 40 3.67 to 4.0 
D 20 4000 4 2000 80 & 30 6.4 to 9.2 
E 30 680 4 300 320 & 150 1.9 to 2.6 

TABLE 3. Drop formation from spherical liquid films: number, mean diameter and its standard 
deviation ; percentage of original film area as drops 

Qualitative observations indicated that the mean droplet size was influenced by 
two factors namely: (i) the initial thickness h of the spherical film, the droplet size 
increasing with h ;  (ii) the liquid viscosity p,  the droplet size increasing with p. 

5. Conclusions 
For a ‘soap bubble ’ ~- formed from water or glycerol with dissolved surfactant - 

the liquid film thickness is typically 0.34 .9  pm when first formed. 
If such a film is ruptured at a point, the hole in the film enlarges rapidly, with a 

constant velocity of order 10 m/s: this is the velocity of the rim bounding the hole; 
the moving liquid gathers up the liquid from the film in its path. The velocity of the 
rim is well predicted by simple theory using either (i) a balance between the surface 
tension forces and the momentum of the rim or (ii) an energy balance, which gives 
the same expression for the rim velocity as method ( i ) ;  the energy balance is 
instructive in demonstrating that there is continuous energy dissipation as the 
moving rim collides with elements of the stationary film. 

Droplets are generated from the spherical film by two mechanisms namely: (i) 
break-up of the rim as it moves round the surface of the original sphere; (ii) 
‘implosion’ of the liquid rim as its remaining elements converge on a point 
diametrically opposite to the point of the original puncture. Measurements show that 
a typical spherical film 60 mm diameter 0.4 pm thick gives, by the two mechanisms, 
a total of about 27000 droplets of mean diameter 70 pm. These droplets have a 
surface energy only a few per cent (3-6%) of the original surface energy of the 
spherical film. 

The unpunctured spherical film drains, owing to gravity, eventually becoming 
naturally unstable when its thickness is of order 0.07pm. The mechanisms of 
drainage and of rim instability deserve further study. 

We are grateful to the Agricultural and Food Research Council who provided 
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